

Corso di Laurea Magistrale in Ingegneria Biomedica Complementi di Chimica e Biochimica per le Tecnologie Biomediche

Il metabolismo: concetti di base

- Caratteristiche generali
- Strategie Trofiche
- Il metabolismo: uno sguardo d'insieme
- Considerazioni termodinamiche
- Controllo del flusso metabolico
- Composti ad «alta energia»
- Reazioni di ossido-riduzione

Francesca Anna Scaramuzzo, PhD

Dipartimento di Scienze di Base e Applicate per l'Ingegneria - Centro di Nanotecnologie Applicate all'Ingegneria francesca.scaramuzzo@uniroma1.it

Dipartimento di

SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA

Generalità

Metabolismo: totalità dei processi attraverso cui gli esseri viventi ricavano e utilizzano energia libera

Catabolismo (degradazione)

Degradazione del materiale nutriente e dei costituenti cellulari per recuperare i loro componenti e/o produrre energia

Anabolismo (biosintesi)

Sintesi delle biomolecole a partire dai componenti più semplici

- Le reazioni cataboliche si svolgono con l'ossidazione esoergonica dei nutrienti
- Energia libera rilasciata da reazioni cataboliche utilizzata per processi endoergonici (e.g. reazioni anaboliche, lavoro meccanico, trasporto attivo)
- Processi eso- e endoergonici prevedono spesso la sintesi intermedia di composti «ad alta energia» come ATP
- I principi che governano il metabolismo sono gli stessi in tutti gli organismi (variazioni dovute principalmente a fonte di energia libera)

Vie metaboliche: insieme di reazioni enzimatiche interconnesse che danno origine a prodotti specifici

Metaboliti: intermedi e prodotti delle vie metaboliche

Strategie Trofiche

Autotrofi: dal greco *autós*, stesso + *trophé*, nutrimento. Sintetizzano tutti i loro costituenti cellulari a partire da molecole più semplici (e.g. H_2O , CO_2 , NH_3 , H_2S)

Chemiolitotrofi

dal greco *líthos*, pietra Ottengono energia libera da composti inorganici

$$2 \text{ NH}_3 + 4 \text{ O}_2 \rightarrow 2 \text{ HNO}_3 + 2 \text{ H}_2\text{O}$$

 $\text{H}_2\text{S} + 2 \text{ O}_2 \rightarrow \text{H}_2\text{SO}_4$
 $4 \text{ FeCO}_3 + \text{O}_2 + 6 \text{ H}_2\text{O} \rightarrow 4 \text{ Fe(OH)}_3 + 4 \text{ CO}_2$

Fotoautotrofi

Ottengono energia tramite fotosintesi: hv promuove trasferimento e da donatori inorganici a CO₂ per produrre carboidrati

Eterotrofi: dal greco *héteros*, altro + *trophé*, nutrimento. Organismi che ottengono energia libera da ossidazione di composti organici (dipendono da autotrofi!)

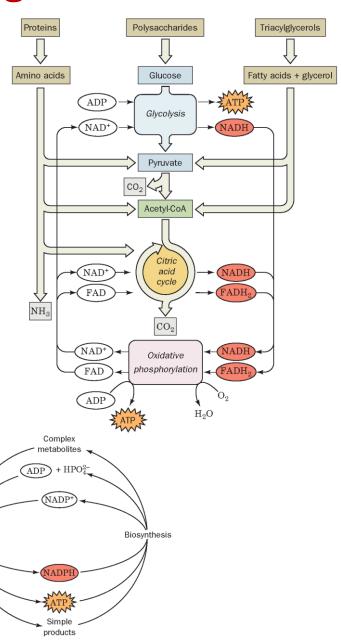
Aerobi

Obbligati: devono utilizzare O_2 (e.g. animali) **Facoltativi**: possono crescere sia in presenza che in assenza di O_2 (e.g. *E. coli*)

Anaerobi

Usano agenti ossidanti come solfati e nitrati

Obbligati: avvelenati da O₂


Vie metaboliche

Catabolismo (degradazione): Degradazione di materiale nutriente e dei costituenti cellulari per recuperare i loro componenti e/o produrre energia

Anabolismo (biosintesi): Sintesi di biomolecole (grande varietà) a partire da pochi componenti più semplici

- Prodotti più semplice ottenuto da catabolismo è spesso acetil-CoA
- Energia libera ottenuta con degradazione è conservata tramite sintesi di ATP o la riduzione del NADP⁺ a NADPH
- Le vie cataboliche di molte sostanze diverse danno tutte pochi intermedi comuni, successivamente metabolizzati in una via ossidativa centrale

Voet, Voet, Pratt, Fundamentals of Biochemistry, IV Edition, 2013

Degradation

Considerazioni termodinamiche

$$A + B \rightleftharpoons C + D$$

$$\Delta G = \Delta G^{\circ\prime} + RT \ln \left(\frac{\lfloor C \rfloor \lfloor D \rfloor}{\lfloor A \rfloor \lfloor B \rfloor} \right)$$

Reazioni all'equilibrio

$$\Delta G = 0$$

$$\Delta G^{\circ\prime} = -RT \ln K_{\rm eq}$$

Reazioni vicine all'equilibrio

$$\Delta G \approx 0.$$

$$[C]_{eq}[D]_{eq}/[A]_{eq}[B]_{eq} \approx K_{eq}$$

- Il verso della reazione può essere facilmente direzionato modulando i rapporti di reagenti e prodotti principio di Le Chatelier)
- Gli enzimi che catalizzano le reazioni vicine all'equilibrio tendono ad agire velocemente per ripristinare le concentrazioni all'equilibrio
- Le velocità nette di queste reazioni sono regolate in modo efficace dalle concentrazioni relative di reagenti e prodotti

Reazioni lontane dall'equilibrio (irreversibili)

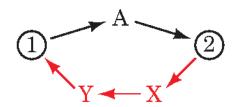
$$\Delta G \ll 0$$

- Un enzima che catalizza una reazione irreversibile ha attività insufficiente al raggiungimento dell'equilibrio
- I reagenti si accumulano in largo eccesso rispetto alla loro concentrazioni all'equilibrio
- Variazioni di [A] e [B] hanno scarso effetto sulla velocità della reazione
- L'enzima è saturato
- L'enzima controlla il flusso del substrato modificando la sua attività

Considerazioni termodinamiche

$$A + B \Longrightarrow C + D \qquad \Delta G = \Delta G^{\circ\prime} + RT \ln \left(\frac{\lfloor C \rfloor \lfloor D \rfloor}{\lceil A \rceil \lceil B \rceil} \right)$$

Le vie metaboliche sono irreversibili


Una reazione fortemente esoergonica è irreversibile. Una reazione irreversibile conferisce una direzione precisa a una via metabolica, rendendola irreversibile

Ogni via metabolica ha una prima tappa di comando

La maggior parte delle reazioni di una via metabolica è all'equilibrio, ma di solito nella prima parte della via metabolica c'è una reazione irreversibile che permette lo svolgimento di tutto l'insieme delle reazioni

Le vie cataboliche e anaboliche sono differenti

Vie di interconversione diverse permettono il controllo indipendente dei due processi

Controllo del flusso metabolico

- Il flusso degli intermedi lungo una via metabolica è più o meno costante
- La velocità di sintesi e demolizione di ogni intermedio in ogni via metabolica ne mantiene costante la concentrazione
- Soltanto a $\Delta G \neq 0$ è possibile compiere lavoro utile
- Flusso dei metaboliti J:

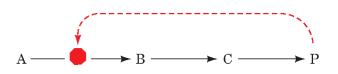
$$J = v_f - v_r$$

- v_f = velocità della reazione diretta
- v_r = velocità della reazione inversa

All'equilibrio

$$J = 0$$

In reazioni lontane dall'equilibrio


$$v_f \gg v_r \qquad J \approx v_f$$

- Il flusso di una via viene determinato dalla tappa che determina la velocità dell'intera via
- Il flusso attraverso la tappa che limita la velocità deve variare in risposta alle esigenze metaboliche
- La tappa che limita la velocità di una via metabolica è la reazione più lenta (spesso la prima reazione della via)
- Il prodotto della reazione più lenta viene rimosso dalle reazioni successive prima che possa equilibrarsi con i reagenti
- La tappa che limita la velocità è una reazione lontana dall'equilibrio: $\Delta G \ll 0$.

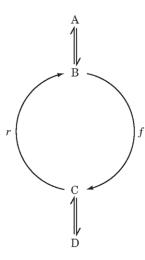
Meccanismi di controllo del flusso metabolico

1. Controllo allosterico

Molti enzimi sono regolati in modo allosterico (es. regolazione a feedback negativo)

2. Modificazione covalente (interconversione enzimatica)

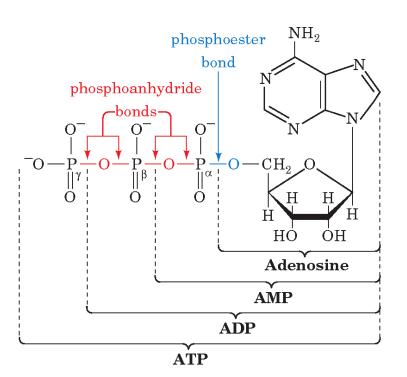
Molti enzimi possono essere fosforilati o defosforilati da altri enzimi o subire altre modificazioni covalenti


3. Ciclo del substrato

Se v_f e v_r rappresentano le velocità di due reazioni opposte non all'equilibrio catalizzate da enzimi diversi, esse possono essere modificate in modo indipendente

4. Controllo genetico

La concentrazione di un enzima può essere modificata in base alle esigenze metaboliche


- 1, 2 e 3 sono a breve termine (secondi o minuti)
- 4 è a lungo termine (ore o giorni)
- Reazioni vicine all'equilibrio rispondono più rapidamente a Δ[Sub]
- Il controllo su più tappe non all'equilibrio è più fine

- L'energia rilasciata in ogni tappa esoergonica è immagazzinata sotto forma di energia chimica
- Intermedi ad «alta energia»: composti la cui demolizione esoergonica consente lo svolgimento di processi endoergonici

ATP (adenosina trifosfato)

$$ATP + H_2O \Longrightarrow ADP + P_i$$

 $ATP + H_2O \Longrightarrow AMP + PP_i$

Compound	$\Delta G^{\circ\prime} \; (\mathrm{kJ \cdot mol^{-1}})$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
$\overline{\text{ATP } (\rightarrow \text{AMP + PP}_i)}$	-45.6
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
$ATP (\rightarrow ADP + P_i)$	-30.5

Compound	$\Delta G^{\circ\prime} \; (\mathrm{kJ \cdot mol^{-1}})$
Glucose-1-phosphate	-20.9
PP_i	-19.2
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2
Source: Mostly from Jencks	, W.P., in Fasman, G.D.

Source: Mostly from Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

$$-O - P - \ddot{O} - P - O - - - - - - - O - - - - O - - - O - - - O - - O - - O - - O - O - - O$$

Reazioni accoppiate

 Le reazioni esoergoniche dei composti «ad alta energia» possono essere accoppiate a processi endoergonici per portarli a completamento

$$(1) \quad A + B \Longrightarrow C + D \qquad \Delta G_1$$

(2) D + E
$$\Longrightarrow$$
 F + G ΔG_2

Se
$$\Delta G_1 \ge 0$$
 $\Delta G_2 \ll 0$

$$\Delta G_1 + \Delta G_2 < 0$$

- $[D]_{eq}$ in (1) sarà piccola, ma > $[D]_{eq}$ in (2)
- D è consumato da (2), quindi (1) si sposta a destra
- (2) favorisce (1)
- Le due reazioni sono accoppiate mediante l'intermedio comune D

$$(1+2)$$
 A + B + E \Longrightarrow C + F + G

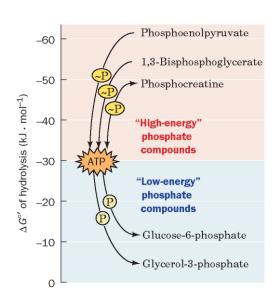
$$\Delta G_3 = \Delta G_1 + \Delta G_2 < 0.$$

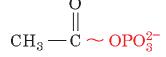
 Se la via metabolica totale è esoergonica, è spostata verso destra nella direzione della reazione diretta

Due esempi di reazioni accoppiate

Endergonic half-reaction 1
$$P_i$$
 + glucose \Longrightarrow glucose-6-P + H₂O +13.8
Exergonic half-reaction 2 ATP + H₂O \Longrightarrow ADP + P_i -30.5
Overall coupled reaction ATP + glucose \Longrightarrow ADP + glucose-6-P -16.7

Phosphoenolpyruvate

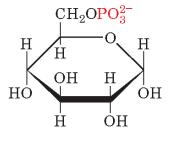

Pyruvate


Altri composti fosforilati

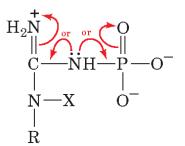
Compound	ΔG° (kJ·mol ⁻¹)
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
$ATP (\rightarrow AMP + PP_i)$	-45.6
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
$ATP (\rightarrow ADP + P_i)$	-30.5

Compound	$\Delta G^{\circ\prime} \; (\mathrm{kJ \cdot mol^{-1}})$
Glucose-1-phosphate	-20.9
PP_i	-19.2
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2
Common Months from Incodes	W/D '- F

Source: Mostly from Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).



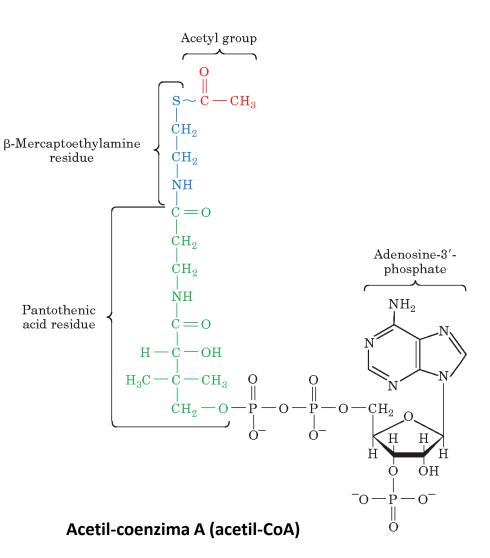
$${\rm ^{OH} \quad O}\atop {\mid \quad \mid \mid}\atop {\rm ^{-2}O_{3}POCH_{2}-CH-C} \sim {\rm ^{OPO_{3}^{2-}}}$$


Acetil fosfato

1,3-bisfosfoglicerato

$$\begin{array}{c} \operatorname{CH_2OH} \\ | \\ \operatorname{HO--C--H} \\ | \\ \operatorname{CH_2OPO_3^{2-}} \end{array}$$

 α -D-glucosio-6-fosfato



$$R = CH_2 - CO_2^-; X = CH_3$$

$$R = CH_{2} - CH_{2} - CH_{2} - CH_{-} - CO_{2}^{-}; X = H$$

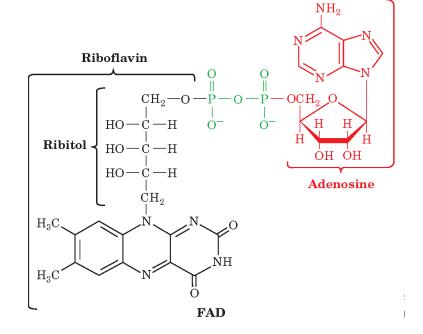
Fosfoarginina

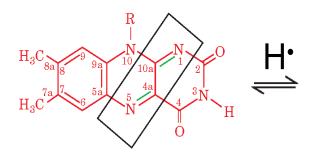
Tioesteri

Co-A (CoASH)

- Adenosina–2-fosfato + acido pantotenico + β-mercaptoetilammina
- Trasportatore di gruppi acili (CH₃(CH₂)_nCO-)
- Per idrolisi di un legame tioestere:

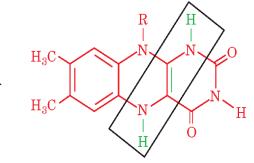
$$\Delta G^{\circ\prime} = -31.5 \text{ kJ} \cdot \text{mol}^{-1}$$


Compound	Formula	Oxidation Number
Carbon dioxide	O=C=O	+4 (most oxidized)
Acetic acid	$_{\mathrm{H_{3}C}}$ ${\mathrm{C}}$ $\stackrel{\mathrm{O}}{\sim}_{\mathrm{OH}}$	+3
Carbon monoxide	:C≡O:	+2
Formic acid	H-COOH	+2
Acetone	$_{\mathrm{H_{3}C}-\mathrm{C}-\mathrm{CH_{3}}}^{\mathrm{O}}$	+2
Acetaldehyde	$_{\mathrm{H_{3}C}}\overset{\mathrm{O}}{-\mathrm{C}}\mathrm{-H}$	+1
Formaldehyde	О Н— <mark>С</mark> —Н	0


Compound	Formula	Oxidation Number
Acetylene	HC≡ <mark>С</mark> Н	– 1
Ethanol	$^{ m H}_{ m 3C} - ^{ m C}_{ m C} - ^{ m OH}_{ m H}$	-1
Ethene	$H_2C = C < H$	-2
Ethane	$\begin{array}{c} H \\ \\ H_3C \textcolor{red}{-C} \textcolor{blue}{-H} \\ \\ H \end{array}$	-3
Methane	H H— <mark>C</mark> —H H	-4 (least oxidized)

$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$$

$$C_{16}H_{32}O_2 + 23 O_2 \rightarrow 16 CO_2 + 16 H_2O$$


NAD+ e FAD

Flavin adenine dinucleotide (FAD) (oxidized or quinone form)

 $\textbf{FADH} \bullet \ (\textbf{radical or semiquinone form})$

FADH₂ (reduced or hydroquinone form)

Equazione di Nernst

$$A_{ox}^{n+} + B_{red} \Longrightarrow A_{red} + B_{ox}^{n+}$$

$$\Delta G = \Delta G^{\circ\prime} + RT \ln \left(\frac{[A_{\text{red}}][B_{\text{ox}}^{n+}]}{[A_{\text{ox}}^{n+}][B_{\text{red}}]} \right)$$

$$\Delta G = -w' = -w_{\rm el}$$

$$w_{\rm el} = n \mathcal{F} \Delta \mathcal{E}$$

$$\Delta G = -n \mathcal{F} \Delta \mathcal{E}$$

- $-\omega'$ = lavoro a pressione e volume costanti
- - $\omega_{\rm el}$ = lavoro elettrico per trasferire n moli di e $^{-}$ attraverso una differenza di potenziale elettrico $\Delta \mathbb{G}$
- $\Delta \mathcal{E}$ = forza elettromotrice o potenziale di riduzione
- $n=n^{\circ}$ moli di e^{-} trasferite per ogni mole di reagente che si trasforma
- \Re = costante di Faraday = 96485 C mol⁻¹

$$\Delta \mathscr{E} = \Delta \mathscr{E}^{\circ} - \frac{RT}{n\mathscr{F}} \ln \left(\frac{[A_{\text{red}}][B_{\text{ox}}^{n+}]}{[A_{\text{ox}}^{n+}][B_{\text{red}}]} \right)$$

$$\mathcal{E}_{A} = \mathcal{E}_{A}^{\circ\prime} - \frac{RT}{n\mathcal{F}} \ln \left(\frac{[A_{red}]}{[A_{ox}^{n+}]} \right) \qquad \qquad \mathcal{E}_{B} = \mathcal{E}_{B}^{\circ\prime} - \frac{RT}{n\mathcal{F}} \ln \left(\frac{[B_{red}]}{[B_{ox}^{n+}]} \right)$$

$$\Delta \mathscr{E}^{\circ \prime} = \mathscr{E}_{A}^{\circ \prime} - \mathscr{E}_{B}^{\circ \prime} \qquad \qquad \Delta \mathscr{E} = \mathscr{E}_{A} - \mathscr{E}_{B}$$

Le semi-reazioni biochimiche

Half-Reaction	
$\frac{1}{2} O_2 + 2 H^+ + 2 e^- \Longrightarrow H_2 O$	0.815
$NO_3^- + 2 H^+ + 2 e^- \Longrightarrow NO_2^- + H_2O$	0.42
Cytochrome a_3 (Fe ³⁺) + $e^- \iff$ cytochrome a_3 (Fe ²⁺)	0.385
$O_2 + 2 H^+ + 2 e^- \Longrightarrow H_2O_2$	0.295
Cytochrome a (Fe ³⁺) + $e^- \iff$ cytochrome a (Fe ²⁺)	0.29
Cytochrome c (Fe ³⁺) + $e^- \iff$ cytochrome c (Fe ²⁺)	0.235
Cytochrome c_1 (Fe ³⁺) + $e^- \iff$ cytochrome c_1 (Fe ²⁺)	0.22
Cytochrome b (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome b (Fe ²⁺) (mitochondrial)	0.077
Ubiquinone + 2 H ⁺ + 2 $e^- \rightleftharpoons$ ubiquinol	0.045
Fumarate $^- + 2 H^+ + 2 e^- \Longrightarrow succinate^-$	0.031
$FAD + 2 H^{+} + 2 e^{-} \Longrightarrow FADH_{2}$ (in flavoproteins)	-0.040
Oxaloacetate $^-$ + 2 H $^+$ + 2 $e^- \rightleftharpoons$ malate $^-$	-0.166
$Pyruvate^{-} + 2 H^{+} + 2 e^{-} \Longrightarrow lactate^{-}$	-0.185
Acetaldehyde + 2 H ⁺ + 2 $e^- \rightleftharpoons$ ethanol	-0.197
$FAD + 2 H^+ + 2 e^- \Longrightarrow FADH_2$ (free coenzyme)	-0.219
$S + 2 H^+ + 2 e^- \Longrightarrow H_2 S$	-0.23
Lipoic acid $+ 2 \text{ H}^+ + 2 \text{ e}^- \iff$ dihydrolipoic acid	-0.29
$NAD^+ + H^+ + 2 e^- \Longrightarrow NADH$	-0.315
$NADP^+ + H^+ + 2 e^- \Longrightarrow NADPH$	-0.320
Cysteine disulfide + 2 H ⁺ + 2 $e^- \rightleftharpoons$ 2 cysteine	-0.340
Acetoacetate + 2 H + + 2 $e^- \iff \beta$ -hydroxybutyrate	-0.346
$H^+ + e^- \Longrightarrow \frac{1}{2} H_2$	-0.421
$SO_4^{2-} + 2 H^+ + 2 e^- \iff SO_3^{2-} + H_2O$	-0.515
Acetate $^- + 3 \text{ H}^+ + 2 e^- \iff$ acetaldehyde + H ₂ O	-0.581

Source: Mostly from Loach, P.A., In Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 123–130, CRC Press (1976).